SML400HB06 #### Attributes: - -aerospace build standard - -high reliability - -lightweight - -metal matrix base plate - -AIN isolation Gate emitter cut off current ### Maximum rated values/ **Electrical Properties** | Collector-emitter Voltage | | Vcc | 1 | 600 | / | 7 | | |--------------------------------------|--|--------------------|------------------------|--------------------|-----|----------|--| | DC Collector Current | Tc=70C, Tvj=175C
Tc=25C,Tvj=175c | I lo | _ | 400
500 | | A | | | Repetitive peak Collector Current | tp=1msec,Tc=80C | I_{crn} | . 8 | 800 | | Α | | | Total PowerDissipation | Te=25C | P _{tot} | | 850 | | W | | | Gate-emitter peak voltage | | V_{ge} | +, | /-20 | 1 | I | | | DC Forward Diode
Current | () CO | I_{f} | I _f 400 | | A | | | | Repetitive Peak
Forward Curren | tp=1ms+c | I_{frn} | . 8 | 800 | | A | | | I ² t value per diode | Vr=0V, tp=10msec,
Tvj=125C
Tvj=150C | I_{t}^{2} | | 11000
10500 | | sec | | | Isolation test voltage | RMS, 50Hz, t=1min | V _{iso} | ol 2. | 2500 | | V | | | Collector-emitter saturation voltage | Ic=400A,Vge=15V, Tc=12
Ic=400A,Vge=15V,Tc=12
Ic=400A,Vge=15V,Tc=13 | 25C | ce(sat) | 1.55
1.6
1.7 | 1.9 | V | | | Gate Threshold voltage | Ic=6.4mA,Vce=Vge, Tvj= | =25C V | ge _(th) 4.9 | 5.8 | 6.5 | V | | | Input capacitance | f=1MHz,Tvj=25C,Vce=2.
Vge=0V | 5V, (| eies | 26 | | nF | | | Reverse transfer Capacitance | f=1MHz,Tvj=25C,Vce=2
Vge=0V | 5V, (| res | 0.76 | | nF | | | Collector emitter cut off current | Vce=600V,Vge=0V,Tvj=
Vce=600V,Vge=0V,Tvj= | | Ices | 1
1 | 5 | mA
mA | | Semelab PIc reserves the right to change test conditions, parameter limits and package dimensions without notice. Information furnished by Semelab is believed to be both accurate and reliable at the time of going to press. However Semelab assumes no responsibility for any errors or omissions discovered in its use. Semelab encourages customers to verify that datasheets are current before placing orders Vce=0V,Vge=20V,Tvj=25C | Turn on delay time Ic=400A, Vcc=300V | | | | |--|------------------|-------------------|----------------------| | Vge=+/-15V,Rg=1.5Ω,Tvj=25C
Vge=+/-15V,Rg=1.5Ω,Tvj=125C
Vge=+/-15V,Rg=1.5Ω,Tvj=150C | $t_{ m d,on}$ | 110
120
130 | nsec
nsec
nsec | | Rise time | tr | 50
60
60 | nsec
nsec
nsec | | Turn off delay time | $t_{d,off}$ | 490
520
530 | nsec
nsec
nsec | | Fall time | t_{f} | 50
70
70 | nsec
nsec
nsec | | Turn energy loss per pulse $ \begin{array}{c} \text{Ic=400A,Vce=300V,Vge=1.V} \\ \text{Rge=1.5}\Omega, \text{L=30nH} & \text{Fi=12.C} \\ \text{ivi=1.0C} \end{array} $ | E _{on} | 3.2
3.4 | mJ
mJ | | Turn off energy loss per pulse Ic=400A,V.c=30 V,Vge=15V Rge=15Q,L=3cpH Tvj=12 C | $\rm E_{off}$ | 15
15.5 | mJ
mJ | | SC Data p≤10μse, Vge≤15V Vc=360V, r,j=25C Vce _{(max)=} Vces-L di/dt Γvj=150C | I_{sc} | 2800
2000 | A
A | | Stray Module induc ance | $L_{\sigma ce}$ | 40 | nН | | Terminal-chip esistance | R_{c} | 1.2 | mΩ | #### **Diode characteristics** | Forward voltage | Ic=400A,Vge=0V, Tc=25C
Ic=400A,Vge=0V, Tc=125C
Ic=400A,Vge=0V, Tc=150C | V_{f} | 1.55
1.5
1.4 | 1.9 | V
V
V | |-------------------------------|---|------------------|--------------------|-----|----------------| | Peak reverse recovery current | If=400A, -di/dt=7000A/μsec
Vce=300V,Vge=-10V,Tvj=25C
Vce=300V,Vge=-10V,Tvj=125C
Vce=300V,Vge=-10V,Tvj=150C | I_{rm} | 270
330
350 | | A
A
A | | Recovered charge | If=400A, -di/dt=7000A/μsec
Vce=600V,Vge=-10V,Tvj=25C
Vce=600V,Vge=-10V,Tvj=125C
Vce=600V,Vge=-10V,Tvj=150C | Qr | 15
29
32 | | μC
μC
μC | | Reverse recovery energy | If=400A, -di/dt=7000A/μsec
Vce=600V,Vge=-10V,Tvj=25C
Vce=600V,Vge=-10V,Tvj=125C
Vce=600V,Vge=-10V,Tvj=150C | E _{rec} | 3.6
7.4
8.3 | | mJ
mJ
mJ | | Thermal Properties | | | Min | Тур | Max | | |-------------------------------------|---------------|-----------------------|-----|------|-------------|-----| | Thermal resistance junction to case | Igbt
Diode | $R_{ heta J ext{-}C}$ | | | 0.09
0.1 | K/W | | Thermal resistance case to heatsink | | R _{0C-hs} | | 0.03 | | K/W | | Maximum junction temperature | | Tvj | | | 175 | С | | Maximum operating temperature | | Тор | -55 | | 175 | С | | Storage Temperature | | Tstg | -55 | 7 | 175 | С | #### output characteristic IGBT-inverter (typical) I_C = f (V_{CE}) T_{VJ} = 150°C transfer characteristic IOBT-inverter (ypical) I_C = f (V_{GE}) V_{OE} = 20 V switching losses IGBT-inverter (typical) $E_{on} = f(I_C), E_{off} = f(I_C)$ VgE = ±15 V, Rgon = 1,5 Ω, Rgoff = 1,5 Ω, VgE = 300 V switching losses IGB i Inverter ($E_{on} = f(R_G), E_{off} = f(R_G)$ $V_{GE} = \pm 15$ /, $I_{off} = 100$ A, ### reverse bias safe operating area IGBT-inv. (RBSOA) $I_C = f(V_{CE})$ $V_{GE} = \pm 15 \text{ V}, R_{Goff} = 1,5 \Omega, T_{Vj} = 150^{\circ}\text{C}$ # forward characteristic of diods inverter (typical) $I_F = f\left(V_F\right)$ #### CIRCUIT DIAGRAM